Gold und Silber dank Supernovä

Alle Elemente, die schwerer als Eisen sind, entstehen in Supernovä im Universum. Alle Edelmetalle auf der Erde sind also kosmischen Ursprungs. Genau deshalb sind sie so selten, faszinierend und letztlich wertvoll, denn sie können nicht von Menschenhand erzeugt werden. Es bedarf enormer Energiemengen für die Schaffung von Gold und Silber, wie sie nur während der Entstehung von Neutronensternen zu finden sind.

Aus Wikipedia:

Nach der heute allgemein anerkannten Theorie vom Gravitationskollaps, die zuerst 1938 von Fritz Zwicky aufgestellt wurde, tritt eine Supernova dieses Typs am Ende des „Lebens“ eines massereichen Sterns auf, wenn er seinen Kernbrennstoff komplett verbraucht hat. Sterne mit Anfangsmassen zwischen etwa acht bis zehn und 30 Sonnenmassen beenden ihre Existenz als Stern in einer Typ-II-Explosion, massereichere Sterne explodieren als Typ Ib/c. All diese Sterne durchlaufen in ihrem Kern die verschiedenen energiefreisetzenden Fusionsketten bis hin zur Synthetisierung von Eisen. Supernovae vom Typ Ib oder Ic durchlaufen vor der Explosion eine Wolf-Rayet-Sternphase, in der sie ihre äußeren, noch wasserstoffreichen Schichten in Form eines Sternwinds abstoßen.
Nachdem der Wasserstoff im Kern des Sternes zu Helium fusioniert ist (Wasserstoffbrennen), sinkt der durch die bei der Fusion freigesetzten Energien erzeugte Innendruck des Sterns, der daraufhin unter dem Einfluss seiner Gravitation zusammenfällt. Dabei erhöhen sich Temperatur und Dichte, und es setzt eine weitere Fusionsstufe ein, der Drei-Alpha-Prozess, in dem Helium über das Zwischenprodukt Beryllium zu Kohlenstoff fusioniert (Heliumbrennen). Der Vorgang (Erschöpfung des Kernbrennstoffs, Kontraktion, nächste Fusionsstufe) wiederholt sich, und durch Kohlenstoffbrennen entsteht Sauerstoff. Weitere Fusionsstufen (Neonbrennen und Siliciumbrennen) lassen den schrumpfenden Stern immer neue Elemente fusionieren. Allerdings erzeugt jede Fusionsstufe weniger Energie als ihr Vorgänger und läuft schneller ab. Während ein massereicher Stern von etwa acht Sonnenmassen einige zehn Millionen Jahre im Stadium des Wasserstoffbrennens verbringt, benötigt das folgende Heliumbrennen „nur“ noch wenige Millionen Jahre. Die letzte Fusionsstufe des Siliciumbrennens lässt sich in Stunden bis Tagen messen.
Beim Eisen, dem 26. Element, stoppt die Fusionskette, da Eisenatomkerne die höchste Bindungsenergie aller Atomkerne haben, und Fusionen zu schwereren Elementen Energie verbrauchen statt erzeugen würden.
Die Geschwindigkeit, mit der ein Stern den Brennstoff in seinem Inneren umsetzt, hängt von Temperatur und Dichte und damit indirekt vom Gravitationsdruck ab, der auf seinem Kern lastet. Eine wichtige Konsequenz dieses Zusammenhangs ist, dass ein Stern aus Schichten besteht, in denen nach außen hin die Umsetzgeschwindigkeit abnimmt. Auch wenn im Kern schon das Heliumbrennen einsetzt, erfolgt in den Schichten darüber noch Wasserstoffbrennen. Die absolute Fusionsgeschwindigkeit im Kern steigt mit zunehmender Sternenmasse stark an. Während ein Stern mit einer Sonnenmasse etwa 10 Milliarden Jahre benötigt, um die Fusionskette in seinem Kern bis zum Erliegen zu durchlaufen, liegt die Lebensdauer extrem schwerer Sterne mit etwa 100 Sonnenmassen nur noch in der Größenordnung von wenigen Millionen Jahren. Siehe Spätstadien der Sternentwicklung für einen genaueren Überblick.

Das Eisen, die „Asche“ des nuklearen Brennens, bleibt im Kern des Sterns zurück. Da keine weitere Fusion stattfindet, kann der Kern keinen nach außen gerichteten Druck mehr aufbauen, der der Gravitation entgegenwirken würde. Zwei weitere Prozesse verstärken diesen Effekt: Erstens werden durch Photonen hochenergetischer Gammastrahlung Eisenatomkerne mittels Photodesintegration zerstört. Dabei entstehen α-Teilchen und Neutronen; die α-Teilchen können ihrerseits durch solche Photonen in ihre Kernbausteine, Protonen und Neutronen, zerlegt werden. Aufgrund der hohen Stabilität von Eisenkernen muss für diesen Prozess Energie aufgewendet werden. Zweitens werden im sogenannten inversen β-Zerfall freie Elektronen durch Protonen eingefangen. Dabei entstehen weitere Neutronen, und Neutrinos werden freigesetzt (J. Cooperstein and E. A. Baron, 1990). Sowohl der Energieverlust durch die Photodesintegration als auch der Verlust freier Elektronen bewirken eine weitere Reduktion des der Gravitation entgegenwirkenden Kerndrucks. Schließlich überschreitet der Kern die Chandrasekhar-Grenze und kollabiert.
Der Kollaps des Zentralgebiets geschieht so schnell – innerhalb von Millisekunden –, dass die Einfallgeschwindigkeit bereits in 20 bis 50 km Abstand zum Zentrum die lokale Schallgeschwindigkeit des Mediums übersteigt. Die inneren Schichten können nur aufgrund ihrer großen Dichte die Druckinformation schnell genug transportieren. Die äußeren Schichten fallen als Stoßwelle in das Zentrum. Sobald der innere Teil des Kerns Dichten auf nuklearem Niveau erreicht, besteht er bereits fast vollständig aus Neutronen. Neutronenansammlungen besitzen ebenfalls eine obere Grenzmasse (Tolman-Oppenheimer-Volkoff-Grenze, je nach Modell ungefähr 2,7 bis 3 Sonnenmassen). Damit nun eine Supernova entstehen kann, darf diese Grenzmasse nicht von dem entstehenden Neutronenkern überschritten werden. Der Kern wird aufgrund quantenmechanischer Regeln (Entartungsdruck) inkompressibel, und der Kollaps wird fast schlagartig gestoppt. Dies bewirkt eine gigantische Druck- und Dichteerhöhung im Zentrum, so dass selbst die Neutrinos nicht mehr ungehindert entweichen können. Diese Druckinformation wird am Neutronenkern reflektiert und läuft nun wiederum nach außen. Die Druckwelle erreicht rasch Gebiete mit zu kleiner Schallgeschwindigkeit, die sich noch im Einfall befinden. Es entsteht eine weitere Stoßwelle, die sich jedoch nun nach außen fortbewegt. Das von der Stoßfront durchlaufene Material wird sehr stark zusammengepresst, wodurch das Material sehr hohe Temperaturen erlangt (Bethe, 1990). Ein großer Teil ihrer Energie wird beim Durchlaufen des äußeren Eisenkerns durch weitere Photodesintegration verbraucht. Da die nukleare Bindungsenergie des gesamten Eisens etwa gleich der Energie der Stoßwelle ist, würde diese ohne eine Erneuerung nicht aus dem Stern ausbrechen und keine Explosion erzeugen. Als Korrektur werden noch die Neutrinos als zusätzliche Energie- und Impulsquelle betrachtet. Normalerweise wechselwirken Neutrinos mit Materie so gut wie nicht. Jedoch bestehen in der Stoßfront so hohe Dichten, dass die Wechselwirkung der Neutrinos mit der Materie nicht mehr vernachlässigt werden kann. [6] Da von der gesamten Energie der Supernova der allergrößte Teil in die Neutrinos geht, genügt eine relativ geringe Absorption, um den Stoß wiederaufleben und aus dem kollabierenden Eisenkern ausbrechen zu lassen. Nach Verlassen des Eisenkerns, wenn ihre Temperatur genug abgesunken ist, gewinnt die Druckwelle zusätzliche Energie durch erneut einsetzende Fusionsreaktionen.
Die extrem stark erhitzten Gasschichten, die neutronenreiches Material aus den äußeren Bereichen des Zentralgebiets mit sich reißen, erbrüten dabei im sogenannten r-Prozess (r von engl. rapid, „schnell“) schwere Elemente jenseits des Eisens, wie zum Beispiel Kupfer, Germanium, Silber, Gold oder Uran. Etwa die Hälfte der auf Planeten vorhandenen Elemente jenseits des Eisens stammen aus solchen Supernovaexplosionen, während die andere Hälfte im s-Prozess von masseärmeren Sternen erbrütet und in deren Riesenphase ins Weltall abgegeben wurde.
Hinter der Stoßfront dehnen sich die erhitzten Gasmassen schnell aus. Das Gas gewinnt nach außen gerichtete Geschwindigkeit. Einige Stunden nach dem Kollaps des Zentralbereichs wird die Oberfläche des Sterns erreicht, und die Gasmassen werden in der nun sichtbaren Supernovaexplosion abgesprengt. Die Hülle der Supernova erreicht dabei Geschwindigkeiten von Millionen Kilometern pro Stunde. Neben der als Strahlung abgegebenen Energie wird der Großteil von 99 % der beim Kollaps freigesetzten Energie in Form von Neutrinos abgegeben. Diese verlassen den Stern, unmittelbar nachdem die Dichte der anfänglich undurchdringlichen Stoßfront genügend klein geworden ist. Da sie sich fast mit Lichtgeschwindigkeit bewegen, können sie von irdischen Detektoren einige Stunden vor der optischen Supernova gemessen werden, wie etwa bei Supernova 1987A.
Originalquelle: http://de.wikipedia.org/wiki/Supernova

Advertisements